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DESIGN OF TIME WEIGHTED MINIMUM ENERGY

DISCRETEf£DATA CONTROL SYSTEMS

by

A. M. Revington and J. C. Hung

SUMMARY 23
/626
A procedure is developed for designing the time weighted minimal energy
control of an n-th order plant. It is desired to take the state of the plant
from some initial state to some required final state in N sampling periods,
with N > n, while minimizing a time weighted cost function of the controlling
energy. This cost function stresses the ccntrolling action of any part of

the input sequence and relegates the remainder of the sequence to a support-
ing role..

The control sequence is found in a very straightforward manner, depending
only on a very useful matrix called the derived matrix. A detailed example
shows how this matrix is utilized and\demonstrates the advantages of this

time weighted minimal energy control sequeégpce. jf
%uﬂt‘w%

INTRODUCTION

The discrete regulator is assuming an increasingly important place in
modern control systems. Discrete regulators are known by the type of input
modulation; pulse amplitude modulated signals followed by a zero order hold
(abbreviated to PAM in this report) implies that the input is held at a
constant level during a sampling period, and allowed changes in level only
at the sampling instants. The state of an n-th order linear time invariant
PAM plant is described by

x [(+D)T] = G(D)x(KT) + b(T) m [(k+1)T]

where x [(k+1)T] is an n-vector, the state of the system at the k+l-th
sampling instant. G(T) is an nxn matrix called the state transition matrix
and h(T) is an nxl matrix called the forcing matrix. m [(k+1)T] is the
input level over the time interval kT & t < (k+1)T. The matrices G(T) and
h(T) are obtained from the plant transfer function by standard techniques®.

Kalman and Bertram ’~ defined and then developed the 'canonical' vectors
as the basic building blocks of the PAM regulator. These vectors, i ,

i=1, 2, ....N, N>n are defined in terms of the state transition and
forcing matrices as




r, = G(T)°i h(T) = G(-iT)h(T) i=1,2, ....n, ....N.

The reader unfamiliar with their use is recommended to read the paper52 which
first introduced and then made excellent use of them. They can make a seem-
ingly difficult sampled-data problem seem simple, We shall show that by a
further extension of this concept, namely the formation and employment of the
"derived matrix," an even more difficult problem, that of energy minimization,
can be reduced to a set of surprisingly simple formulae.

In the development of the application of the canonical vector concept
it was shown3 that any initial state x could be represented by a linear
combination of these canonical vectors:

?s.—_

N
a r >y N> n

k=1

where the a are scalars. It was also shown that this state could be taken

to the origin of the state space by applying the PAM input sequence

m(kT) = -a k=1, 2, .... N. (1)

k b

Thus was demonstrated an elegant mathematical conception of the discrete
regulator which laid the foundations for further work. The regulator
problem was essentially reduced to finding a representation of the disturbed
state x as a linear combination of the canonical vectors.

In this paper we shall derive formulae that can be directly applied to
the problem of taking the disturbed state x to the origin of the state space
while minimizing a quadratic cost function of the members of the input
sequence. In a previous report4 techniques were developed to handle the
so-called minimal energy problem. The more general cost function considered
here may be regarded as the time weighted extension of the previous report.

MATHEMATICAL DEVELOPMENT

Problem Statement

Given the linear n-th order time invariant PAM plant described by

x [@+DT] = 6(Dx&T) + h(T) w [ (+1)T] (2)




3}

it is desired to find the input sequence m(kT), k = 1, 2, ...,.N that will
take any given initial state x to be the origin of the state space X in
N sampling periods, and that will also minimize the cost function

N
E = Z d(k) m(kT)> (3)
p

where the d(k) are positive scalars. When d(k) = 1 for all k this problem
reduces to the minimal energy problem™.

Theory

Associated with the system of Eq. 2 we have the N canonical vectors, N
an integer, N > n,,

I = G (-kT) h{T) k=1, 2, .... N. (4)

Thus a general representation of the initial disturbed state is

N

X =Z ar . (5)

k=1
For '"completely controllable" Systems5 n of the r, are linearly independent.
Now x is an n-vector, so that for N>n the representation of x in Eq. 5 is
not unique, in other words there are an infinite number of representations,
input sequences, which can be used to take x to the origin in N> n sampling

periods. If N = n there is a unique solution; the solution to the set of
n simultaneous equations

n
x = E ar,
k=1

ie the unique solution to the linear time-optimal regulator problem. We
assume however N >n, so that the additional problem of minimizing the
cost function, Eq. 3, has meaning.

Rewriting the representation of Eq. 5,

x = AL t Z Dtk 6)




giving
x =Ra+ Qb 7

where R is the nxn matrix, the columns of which are the n canonical vectors
Iys k=1,2,..n. Q is the nx(N-n) matrix with columns, the canonical vectors
T4l Xnt2s - Iy a is the n-vector (al, an, ...an) and b the (N-n) vector

(bi, b2, ...bN_n)t = (an+1, an+?2,; ... aN)t, where "t" denotes the transpose
of a matrix. The components of a and b represent, except for a change in

sign, the input sequence to be applied to the plant, From Eq. 7,

Iy =a+rlop. (8)

R

Define
'lx

c =R
(9)
H=Rr1lqg .

This premultiplication of Eq. 7 by the matrix Rl effectively takes the vector
x in X, the state space, to the vector ¢ in C, where C is a new n-space, the
coordinates of which are the first n canonical vectors Iy, Iy - - I The
reason for doing this is merely to simplify later manipulations. We shall
call C the "canonical vector space". ¢ is merely the initial state x express-
ed as a linear combination of the first n canonical vectors. The nx(N-n)
matrix H, which we shall call the '"derived matrix", having derived it from
the last N-n canonical vectors, is as fundamental to the regulator problem
with more than n inputs as the matrix R-l is fundamental to the simple linear
time optimal regulator. Thus by premultiplying the original representation,
Eq. 6, by R-1 we have the considerably simplified representation,

£ =a+H ., (10)
The energy consumption can also be written compactly as

E = a'Da + b'Fb (11)
where D is the diagonal matrix with elements dyyp = d(k), k=1,2,..n, and F is
the (N-n)x(N-n) diagonal matrix with elements fxk = d(k#n), k=1,2,...N-n.
From Eq. 10,

Substituting a from Eq. 12 into Eq. 11 reduces the energy function to a
function of N-n independent variables, the components of b, giving




E=(c-H) D (c-Hp) +b" Fb (13)
E=(c"-b"H") D (c-Hp) +b° F b (14)
, E = ¢"D¢ - 2¢"DHb + b [n'pm + F] b (15)
Differentiating E with respect to each of the components of Q,bp, p=1, 2,
o .«.. N-n, we find (see Appendix I) by setting OE = O that a minimum of
E is obtained when §bp
t t
[H DH + F] b =H Dec. (16)

Substitute Eq. 10 into Eq. 16, eliminating ¢, we obtain
t t t
H DHb + Fb = H Da + H CHb. (17)

Then

Fb = H'Da (18)

Substitute Eq. 18 into Eq. 11, to obtain

a=c - uF '8 pa (19)
¢ so that we have

[1 + i D]_a_\ =¢ (20)
where I is the nxn identify matrix.
Let

B=1+HF 'H D (21)
Then -1

a=3B ¢ (22)

The existence of B-1 is proved in Appendix II. Now we obtain the final
equation giving a simple expression for the value of the minimal energy by
substituting Eq. 18 into Eq. 11 giving

. E = gth + hthDg = [gt + bt Ht]‘Dg (23)




Thus

E=c'Da (24)

In summary, the important equations are repeated below.

From the representation of the initial state ¢ in C we had
c=a+HDb (25)

The energy consumption in taking ¢ to the origin is then

E = aDa + b Fb (26)
which is minimized when Fb = Ht Da, with the minimum value E = gt Da
where
a=38l¢ (27)
and
b =F "' u" Da (28)
Eq. 27 and Eq. 28 give with Eq. 1
[m1), m2) @] = [-4, -a -a_] = -a
m , m(2), .... m(n)| = a;s 99 a|=-a
t
En(n+1), m(n+2), .... m(N)] = [-bl, -b2, e -bN-n] = -b
To demonstrate the way in which these results are applied to a practical
problem we illustrate a suggested design procedure by a worked example.
EXAMPLE
Consider the simple second order plant described by the transfer
function below, whose input is the output of a zero order hold, M(s), and
whose output is Y(s). Then
¥(s) _ _1 (29)

M(s) s(s+l)

Let the state variables be x. (t) = y(t), xz(t) = y(t). y(t) is the
time dependent system output, an& y the time dérivative of the system output

6




(position and velocity for example). Eq. 29 then gives the following vector
differential equation,

x1 0 1 x1 0
= + m (30)
X, 0 -1 X, 1

where m is the system input. For a given initial condition x(0), the solution
of Eq. 30 is

xl(t) 1 l-e-t xl(O) e_t + t-1
= + m(t) (31)
x, (t) 0 et x2(0) 1-et
Eq. 31 may be expressed in compact form as
x(t) = G(£)x(0) + h(t) m(t) (32)
Then in the system representatien of Eq. 2,
1 1-eT e T4r-1
G(T) = and h(T) = (33)
-T -T
0 e l-e

With a sampling period T = 1 sec, the canonical vectors are given by Eq. 4,
for k=1, 2, .... N

_(ek -ek'l-l)
r = (34)
k k k-1
e -e
Let us arbitrarily choose N=4. Then

-0.7182 -3.6706
R = (35)

1.7182 4.6706

and




-11.6961

12,6961

-33.5118

34.5118

Then we obtain the derived matrix H = R-IO as

-2.7183

3.7183

Let us also choose the initial state xl(O) =1, x2(0) = 0.

R x(0)

g:

We readily find I + H F lH® D

: 2.71832+ 10.1072
1+d11

f11 f22

f

11 22

Let us consider two cases.

(a) No time weighting D =

(b) Time weighting, D =

Case(a) D=1, F

I

From Eq. 27, = B-yg, we obtain

1

a 0.457 0.405

a 0.405 0.366

and from Egq. Da =H

d -2.7183x3.7183 -10.107x11.107 14d 3.71832
11 f 22

-10.107

11.107

1.582

i -0.582
L

is given by

2.7183x3.7183 - 10.107x11.107

Then

(36)

(37)

(38)

d [‘
22 £1

. + 1%.107
11 22
=1
3 0
F =

0 4
1.582 0.4875
-0.582 0.4275

]

f

22

139

(40)



b -2.7183 3.7183 0.4875 0.2643

1
= = (41)
b, -10.107 11.107 0.4275 -0.1794
Case (b). With d11 =1, d22 = 2, f11 = 3, f22 = 4, we obtain from Eq. 39
and Eq. 27,
2 0.6596 0.5768 1.582 0.7078
= = (42)
a, 0.2884 0.2661| |-0.582 0.3014
and from Eq. 28
b 1/3 o0 | |-2.7183 94%1§3 0.7078 0.1056
= = (43)
b, 0 1/4} |-10.107 115191 0.3014 -0.1149

Thus we have found the minimal energy representation (case a) and the time
weighted minimal energy representation (case b) for the initial state x, = 1,
X9 = 0. It is interesting to compare the input energies of the different
cases.

We find,

Case (a) a2 + az + b2 + b2

1 9 1 2 0.5226, N =4

Case (b) af + ag + bf + bg = 0.6161, N =4
2 2 . .
Case (c) a; + a, = 2.8415, N =2 (time-optimal)

We see that although the time-optimal control takes only two sampling periods
to settle, giving the fastest response when saturation does not limit the input,
it consumes over five times the energy of the minimal energy case and more

than four times that of the time weighted energy case.

The representation, the vectors a and b, can be used in two ways.
1. From Eq. 1, if we allow

m(k) = -a, , k=1,2

k,

n(k+2) = -b_, k=1,2

k’
9




as the .input sequence then we can consider the initial state to be some

disturbed state that we wish to return to the desired state, the origin
of the state space.

2. If we allow
m(k) = + a k=1, 2

n(k+2) = +b , k=1, 2.

k’
to be the input sequence then the "initial state" x can be considered as
the desired final state and the origin the initial state. This sequence
will be used in the calculations following.

By a suitable transformation the origin of the state space can easily
be moved to any desired point, and we can then use the vectors a and b
as the input sequence to take any state to or from any other state, in N
sampling periods and with a time weighted energy comstraint.

A plot of the output of the plant with time is given in Fig. 1, for
the two different cost functions. A third plot, that of the time-optimal
case? is also shown for comparison. The inputs required for each output
are shown in Fig. 2. The slope of the output, the velocity, can be found
at the time when the outputs are at 90% of their final value., These vel-
ocities are, see Fig. 1,

Case (a) 0.262 at t = 3.1 secs.

Case (b) 0.206 at t = 2.9 secs. {44)
Case (c) 0.377 at t = 1.5 secs. (time-optimal)
DISCUSSION

In the light of the example the advantages of the method are clearly
seen. The method allows the immediate and straightforward calculation of
an input sequence which not only considerably reduces the chances of sat-
uration but also, when D and F are both identity matrices, minimizes the
energy required by the system. The time weighted case can be used when,
for some practical reason, it is desired to place the main burden of control
on a certain section of the input sequence. 1In the example we emphasized
the role of the early inputs and lessened the effect of the later inputs,
This control still retains the deadbeat response and the ease of calculation
of the inputs, while still requiring much smaller input magnitudes and input
energy than the time optimal regulator. Of considerable value, however, is
the fact that we approach the final state gradually, as shown in Eq. 44. A
descending vehicle should not have high velocities near the touchdown point,

10



as any errors in measurement could not be corrected in time. 1In general, by
saving several sampling periods for the final settling time we should have
enough time to allow for any error that might exist. We also observe, from
Fig. 1, that the time weighted minimum energy control gives a faster rise
time the the ordinary minimum energy control.

In summary, the advantages of the time weighted minimum energy control
over minimum energy control are that by a suitable choice of D and F, it is
possible to approach the terminal state more gradually and yet, for a given
N>n, have a faster rise time. It should be noted that these improvements
are not restricted to the particular D and F used in the example, so that
other choices could give still greater improvements.

CONCLUSIDNS

A procedure has been developed for designing the time weighted minimum
energy discrete-data control of an n-th order plant, extending the results
of a previous report 4 The advantages of the design have been demonstrated
and discussed with the aid of an example. The basis of the design procedure
is the derived matrix, the use of which gives the desired control in a very
simple manner. The procedure can be used with plants of any order and type.

It has been demonstrated that the chances of saturation are reduced by
increasing the allowed .settling time; N sampling-perioéds. "Since in many cases
timé optimal control~is not of primary importance this method can be sucess-
fully applied to the problem of input saturation.

A forthcoming report will discuss the relationships between the number
of sampling periods and the corresponding minimum energy for a given initial
state. Such relationships can be developed with the use of the derived matrix
and can be employed by the system designer to choose, for example, the value
of N for a given minimum energy consumption and initial state. This inform-
ation will enhance the usefulness of this and the previous report 4 Research
in this general area is being continued with a detailed study of the saturation
problem.
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APPENDICES

Hth.

1. Derivation of Eq. 16; [HtDH + F] b

Eq. 15 states
E = ctbe - 2¢tpHb + l_at[HtDH + F] b

= c'De - 2bPHtDe + bF [ HiDH + F] b

Therefore,

3
oby

OE

g_g - a_bz = -2u'Dc + 2 [HtDH + F] b

abN-n

Setting -%% = 0, we obtain directly
[HtDH + F] b = HDc

Since we obtain on further differentation,

fr
[y

, which has positive elements,

1oy,
&
. o Q/
me FHEe &
N

421

2
bN-n

Eq. 15 is the condition for a minimum of the cost function E.
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-1 -
IT . Given B= I +HF HtD, show that B 1 exists.

We shall prove that B is a positive definite matrix, from which it follows
directly that the inverse of B does exist. The background material for this
Appendix is contained in Hadleyé. -1

For convenience let N-n =p. Let ¥ =TF; Fy, where Fq is the p x p
diagonal matrix with elements

1 .
fjj = 1/« fjj , j=1,2, .. p.

Then
t [ ¢]
HFFyH = ¥ [El Wy - - ﬂn]
t
¥
t
Lﬂn_
where
. <hi1 » hizg ... hip_>
17 =
1 £11 £22 { £pp
for i=1, 2, . . n. hij is the i, j-th element of H. We can then express
#E~ D in the form,
[t t t |1 T il
Wl¥  ¥p¥ - - ¥ ¥y dipn O 0
wy w1 wp Wy - - -yﬁﬂn 0 dp2 - 0
t t t
L.Vln.“!]_ ¥h Wo c ¢ * ¥Wp Wy L 0 0 b 'dnn

Let us call the first matrix W. Then

latp = wp

HF
W is simply the Grammian of the vectors w, , i =1, 2, . . n, and thus each of
the principal minors of W is positive semi-definite, since each principal
minor is itself a Grammian. The principal minor of WD of order m is then
dyq dgyp - - - dyy times the principal minor of order m of W. Thus HF-1HtD is
positive semi-definite, and its eigenvalues are pj; » 0 for i = 1, 2, - - n.

13




The eigenvalues of T + HF'lHtD are then 1 4+ pyjy , i =1, 2, ., . n, which are
clearly positive. Thus B =1 + HF-1HtD is itself positive definite, and B-1

does exist. Q.E.D.
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